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Nonsteady flow about an airfoil with a nontrivial rate of change in the angle of attack 
(d~/dt = 8), occurring during large vibrations of the airfoil, is accompanied by flow 
separation and phenomenon which can be termed dynamic hysteresis of the airfoil's aerodyna- 
mic characteristics (in contrast to the familiar hysteresis occurring at & = 0). Such 
separation has been intensively studied in recent years in connection with its importance 
in the solution of problems in aviation, hydrodynamics, and wind-power engineering. Some 
of these investigations are discussed in the survey [I], which presents a classification 
of the different stages of development of dynamic stalling. This classification included 
the final stage of deep dynamic stall, which is accompanied by flow separation from the 
leadingand trailing edges of the airfoil and is associated with the highest-amplitude 
dynamic hysteresis of the aerodynamic characteristics. An important aspect of deep dyna- 
mic stall is that the aerodynamic loads experienced at the given angle of attack with non- 
trivial ~ for the airfoil may be greater than the loads experienced at the same angle of 
attack when ~ = 0. This property of deep dynamic stall was firmly established experimental- 
ly in 1985-1986 [2-4]. A new phase of study was the transition from the investigation of 
dynamic stall with periodic (mainly harmonic) oscillations of the angle of attack of the 
airfoil to the examination of the same phenomenon with aperiodic oscillations. Specifical- 
ly, attention began to be paid to the case when the angle of attack changes with a constant 
angular velocity (8 = const), beginning from zero and proceeding to a large value (~ = 60 ~ 
or = = 90 ~ ) before becoming constant or slowly decreasing. 

However, such increases in the drag and lift coefficients of an airfoil with ~ = const, 
examined in relation to the static values fixed in [3], are sensational and are quite un- 
expected for aerodynamics. In fact, the drag coefficient of an airfoil at ~ = 90 ~ under 
static conditions - which is close to the coefficient of a flat plate with the same angle 
of attack (c x = 2.0) - reaches c x = 5.0 at ~ = &b/2U~ = 0.5 (where b is the chord of the 
airfoil and U~ is the velocity of the undisturbed flow) and c x > ii.0 at ~ = 1.0 [3]. The 
lift coefficient of the airfoil undergoes the same type of sensational change. Thus, with 

= 45 ~ in the supercritical region of angles of attack, the maximum value Cyma x = 1.2 

under static conditions, Cyma x = 5.5 at ~ = 0.5, and Cyma x approaches i0.0 at ~ ~ 1.0 [3]. 

Is it possible that a manifold (by a factor from 3 to 9) increase in the aerodynamic 
loads at the same given angle of attack is seen only at large values of ~ which are rarely 
encountered in practice? It turns out that this is not entirely the case. With a reduction 
in the rate of change in the pitching angle by an order of magnitude (at ~ = 0.088), Cxmax 

and Cyma x remain on the order of 3.0 [3]. Finally, at ~ = 0.02 - which corresponds to the 

case in which the peripheral velocity of the tip of the airfoil when rotated relative to 
the point at the middle of the chord is only 2% of the free-stream velocity - Cyma x is more 

than twice as great as Cyma x for the airfoil under static flow conditions [4]. 

Of course, the results obtained in [2-4] at Reynolds numbers Re on the order of l0 s 
must be substantiated for Re on the order of 106-107 in order to establish a correspondence 
with the known aerodynamic characteristics of airfoils beyond the limits of the transition- 
al region of Re. These characteristics include the data obtained in [i]. Despite this, 
the experimental results reported in [2-4] present a challenge to theoreticians, since 
they were not predicted by any of the known theories or models of nonsteady flow about an 
airfoil. We known of only one successful attempt [5] to describe deep dynamic stall by 
numerically solving the Navier-Stokes equations for the nonsteady turbulent flow of a gas 
around a vibrating airfoil. In this case, the pattern of hysteresis of the aerodynamic 
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characteristics that was reproduced was to a significant extent similar to that seen in 
[i] with harmonic vibrations of an airfoil in accordance with the law a = 15 ~ + i0 ~ sin &t. 
As regards large supercritical angles of attack = = 45, 60, and 90 ~ - where the increase 
in the aerodynamic loads during nonsteady flow about the airfoil with & = const is particu- 
larly substantial - we know of neither numerical nor theoretical results that explain this 
increase. 

The goal of the present investigation is to explain the sensational experimental 
results obtained in [2-4] with & = const and to construct a theory to explain the hysteresis 
of the aerodynamic characteristics of the profile of a wing during its vibration in the deep 
dynamic stall regime described in [i]. The starting point is the theory presented in [6, 7] 
for quasisteady flow about a wing at subcritical angles of attack. In the deep dynamic 
stall regime, the wing profile is represented by a flat plate in a flow of an incompressible 
fluid. The flow has separated from the leading and trailing edges, so that the lift forces 
that normally act on these edges during nonseparated flow are not realized. It is shown 
that the main physical reason for the increase in aerodynamic loads at m ~ 1 and & = const - 
and the reason for dynamic hysteresis during periodic vibration of the airfoil in the deep 
dynamic stall regime - is a change in the geometry (displacement thickness) of the vortex 
wake behind the airfoil (in the limiting case being examined here, the disappearance of 
the displacement half-body of the wake at & > 0). Thus, thanks to the use of an energy- 
based approach that requires considerably less information on the details of the global 
flow than is needed when a purely mechanical approach is used, the quasisteady variant of 
the model of the second dissipative layer and wake proposed in [8] turns out to be an 
acceptable means of explaining and even quantitatively describing one of the most complex 
phenomena in aerohydrodynamics - the phenomenon of deep dynamic wing stall. 

I. We will examine separated flow about a plate of infinite span moving in a compressi- 
ble fluid with the translational velocity Ug. During the plate's motion, the angle of 
attack a changes with the constant angular velocity & relative to a point on the plate 
located the distance x 0 = ~0b/2 from the plate's middle (b is the chord of the plate). 

It is readily seen that at & > 0 the dissipative vortex wake behind the plate does 
not have the time to form that it does at & = 0. In the latter case, there is sufficient 
time for the formation of a displacement half-body having a thickness, at an infinite 
distance from the plate, which is equal to the momentum thickness. 

We will study the limiting case of nonsteady flow about a plate in the case where the 
displacement thickness of the wake is zero. In the absence of suction forces on the leading 
and trailing edges of the plate due to separation of the flow in the deep dynamic stall 
regime, the resulting force can be applied only in the direction norm~l to the plate. The 
circulation F = 0, and the lift is due to the drag applied to the plate [7]. If the aero- 
dynamic loads under these conditions are determined only by the drag, then an energy ap- 
proach can be used. This simplifies the problem considerably. 

The work done by the drag XU~ is represented as the sum of the amounts of work XIU~ + 
XDU= done, respectively, in changing the kinetic energy of the unsteady flow - which is con- 
nected with a change in the apparent additional mass (inertial component) - and in over- 
coming the loss of energy (dissipation) of the jets separating from the leading and trailing 
edges of the plate in the absence of suction forces on these edges (dissipative component). 
The initial data to find these components can be obtained by solving the problem of noncir- 
culatory and nonseparated unsteady flow about a plate of infinite span with U= = const and 
A = const. This problem was solved in accordance with a plan that we developed jointly 
with Sadovskii [9]. The following formulas, obtained in [9], are used for the initial data: 

c ~  = ~[(o/2) sin 2a + o~z0 cos a ] ;  (i.i) 

c~(+_l) = (~/2)[sin ~ - -  ~( t /2  - -  ~0)] 2, ( 1 . 2 )  

where  CxE i s  t h e  d r a g  c o e f f i c i e n t  o f  t h e  p l a t e  in  a n o n s e p a r a t e d  u n s t e a d y  f l o w ;  c ~ ( i l )  a r e  
t h e  c o e f f i c i e n t s  o f  t h e  s u c t i o n  f o r c e s  a c t i n g  on t h e  l e a d i n g  (+1)  and t r a i l i n g  ( - 1 )  e d g e s  
o f  t h e  p l a t e  in  t h e  n o n s e p a r a t e d  u n s t e a d y  f l o w .  

I t  i s  n a t u r a l  t o  assume t h a t  
c~z = C~E, ( 1 . 3 )  
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since in the case of nonseparated flow the work XIU~ ensures a change in the kinetic energy 
of an unsteady flow about the plate without circulation and without a wake, i.e., under 
the conditions which correspond in the present limiting case to deep dynamic stall. It is 
assumed that the local difference in the two flow components near the sharp edges does not 
violate Eq. (1.3), which connects two integral quantities. However, this local difference 
does lead to the generation of a dissipative component in the work done by the drag. In 
the case of steady separated flow about the plate (~ = 0) with an arbitrary angle of attack 

[7], the existence of the dissipative component does lead to the appearance of the dissi- 
pative drag coefficient 

CxD = c,c(+l) + cT(--i). ( 1 . 4 )  

We will use this relation here to determine the dissipative component of the drag force 
at & > 0 on the basis of the above assumption that & is large enough so that there is not 
sufficient time for the formation of a full-sized vortex wake behind the plate. We further 
assume, however, that ~ is at the same time small enough so that there is sufficient time 
for the establishment of a steady-state value for the rate of dissipation of the kinetic 
energy of the jets which separate from the leading and trailing edges. The latter condition 
is reflected by Eq. (1.4). 

The lift of the plate is derived from condition of normality of the resultant relative 
to the plane of the plate at the given moment of time. The lift is determined by two com- 
ponents of the drag: inertial and dissipative 

cv ~ (c~r + cxD)Itga. (i. 5) 

Thus, in order to use Eqs. (1.3)-(1.5) to calculate the aerodynamic loads on the wing with 
= const within the framework of the model of deep dynamic stall being examined here, it 

turns out to be sufficient to have initial data - the functions CxE = f(~, ~0, ~), cT(• = 

f(~, x0, ~) [9, Eqs. (i.i) and (1.2)] - for nonseparated noncirculatory unsteady flow about 
a rotating plate. 

2. First we will determine the aerodynamic load in the simplest case, when lift and 
the inertial component of the drag are absent. It can be seen from Eqs. (i.i), (1.3), and 
(1.5) that this occurs when ~ = 90 ~ At ~0 = 1/2 (when the axis of rotation of the plate 
is located a distance from the leading edge corresponding to one-fourth of the chord), it 
follows from Eqs. (1.2), (1.4) that 

' C X D  = ~/2 + (a/2)(l + m)~. ( 2 . 1 )  

I n  F i g .  1, Eq. ( 2 . 1 )  i s  compared w i t h  e x p e r i m e n t a l  d a t a  [3]  ( d o t - d a s h  l i n e )  f o r  an 
NACA 0015 wing.  The d a t a  was o b t a i n e d  w i t h  Re = l0 s and v a l u e s  o f  m t h a t  change  w i t h i n  
t h e  r a n g e  0 . 0 8 8 - 0 . 9 9  a t  t h e  moment t h e  p r o f i l e  o f  t h e  wing r e a c h e s  a = 90 ~ . There  was no 
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indication in [3] of the position of the axis of rotation of the airfoil when the experi- 
mental data was obtained. To evaluate the effect of the position of the axis of rotation, 
Fig. 1 presents the theoretical curve at T 0 = i (the axis of rotation coincides with the 
leading edge of the plate); it can be seen that the position of the rotation axis turns 
out to have a strong effect on the value of CxD. 

The dashed line in Fig. 1 shows the levels corresponding to theoretical values of the 
drag coefficient of the plate with & = ~ = 0. These results were obtained from [6] (~ = 
90 ~ ) and pertain to the following cases: CxD = 1.69, when a fully-formed vortex wake with 
a displacement thickness ~* = CxD/2 is created behind the plate; CxD = ~, when the displace- 

ment thickness of the wake is zero, 6~ = 0. The form of the empirical relation reflects 
the complex nonlinear character of the phenomenon of deep dynamic stall: a rapid increase 
in CxD at m ~ i which is replaced by a slow increase finally, at m = 1.0, the attainment 

of sensationally large values of CxD in excess of I0.0. 

The rapid increase in CxD at m ~ ! is empirical substantiation for the main idea behind 
the present investigation: the transition from the value m = 0 to finite but small values 
of ~ is accompanied by disappearance of the fully formed wake behind the plate and a change- 
over to the wakeless flow incorporated into our model. At ~ § 0, this flow corresponds 
to CxD = ~. The slow increase in CxD seen in the tests at 0.1 < m < 0.5 is satisfactorily 
described by Eq. (2.1), while the more rapid increase in CxD within the range 0.5 < m < 1.0 
is within the range of the theoretical estimates - although the latter were obtained with 
the axis of rotation of the plate in a very advanced position. In any case, the large 
values of CxD > I0.0 [3] lose their sensational aspect, since they can be explained from 
a theoretical standpoint. In the simple case we are examining - when lift and the inertial 
component of drag are absent - Fig. 1 shows the possible reduction in the drag coefficient 
when the rotation of the plate is stopped with m = 0.5 at ~ = 90 ~ . This information is 
shown by the arrows (i corresponds to disappearance of the unsteady component of the drag 
coefficient while the displacement thickness of the wake remains zero; 2 corresponds to 
a further decrease in the drag coefficient due to the formation of a full-sized quasisteady 
vortex wake). 

3. Can the present model of deep dynamic stall explain the unexpectedly large maxima 
of the lift coefficient seen in the American experiments? To answer this question, we 
compare the theoretical and experimental relations Cy = f(~) obtained at ~ = 45 ~ In 

neither case do the values of Cy at ~ = 45 ~ coincide with the values obtained for Cyma x. 

However, the former are close to the latter and can thus serve as a basis of comparison 
with the relations CxD = f(~) at ~ = 90 ~ These relations also fail to coincide with 

Cxmax = f(m) but are close to these functions. 

The solid line in Fig. 2 shows the theoretical relation Cy = f(~) at ~ = 45 ~ , con- 
structed by means of Eqs. (1.3)-(1.5) with the position of the axis of rotation on the plate 
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x0 = 1/2 (one-fourth of the chord from the leading edge). The vertical dashed line in Fig. 
2 shows the inertial component of the lift coefficient. It can be seen that it is consider- 
ably less than the dissipative component. The dashed line in Fig. 2 shows levels correspond- 
ing to the theoretical values Cy = 1.0 and Cy = ~/2 at = = 45 ~ . These results were obtained 
in [6] for steady separated flow about a plate (m = 0) with a fully formed wake and with 
a zero wake displacement thickness, respectively. 

As when we compared the functions CxD = f(m) at ~ = 90 ~ in Fig. i, if we compare the 
theoretical relation with the two empirical relations Cy = f(~) at ~ = 45 ~ from [2, 3], we 

note a rapid increase in Cy = f(m) at m ~ i and a slow increase at m § I. These findings 

are consistent with the theoretical relation. Arrows 1 and 2 in Fig. 2 show the hysteresis 
of the lift coefficient when plate rotation is stopped at the angle of attack ~ = 45 ~ with 
m = 0.5 (arrow 1 corresponds to the decrease in the lift coefficient due to disappearance 
of the unsteady inertial and dissipative components; arrow 2 corresponds to the further 
reduction in the lift coefficient due to the formation of a full-sized vortex wake behind 
the plate). 

4. After establishing that the present model of deep dynamic stall can explain experi- 
mental data on the aerodynamic loads on a wing with ~ = const and large angles of attack, 
it is interesting to explore the model's ability to describe the dynamic hysteresis of the 
aerodynamic characteristics for moderate angles of attack and a periodic change in this 
angle in accordance with the law [i] 

= ao q- a l s in l t .  ( 4 . 1 )  

Figure 3 reproduces experimental relations Cy = f(u) from [I] and [5] for an NACA 0012 
wing (at Re of an order of magnitude exceeding those attained in [2, 3]) experiencing a 
change in the angle of attack in accordance with law (4.1) (s 0 = i0 ~ ~z = i0~ �9 The axis 
of rotation in this case is located 1/4 of the chord from the leading edge. The results 
shown are for m = 0.i [i] and m = 0.15 [5]. The flow regime in the tests (with separation 
of jets from the leading and trailing edges) corresponds to the conditions under which the 
model is valid, even though the maximum angle of attack is only 20 ~ . To obtain a theoreti- 
cal estimate of the amplitude of the hysteresis loop of the lift coefficient, we replace 
the sinusoidal relation in the range 0 < ~ < 20 ~ with a relation consisting of two sections: 
a linear section (~ = const); a section corresponding to the steady-state flow regime (~ = 
0). Then using a method similar to that employed above, we can determine the inertial and 
dissipative components of c x and then find Cy. 

In Fig. 3, the theoretical relations Cy = f(=) for m = 0.i and m = 0.15 are shown in 

the range 15 ~ < ~ < 20 ~ . Arrow I characterizes the increase in Cy with the transition from 

= 15 ~ to ~ = 20 ~ when m = const, while arrows 2 and 3 show the decrease in Cy accompany- 

ing the disappearance of the unsteady inertial component and total dissipative component 
of the lift coefficient on the section m = 0. Arrow 4, originating, from point B correspond- 
ing to steady separated flow about a plate with a fully formed vortex wake behind it, passes 
below the dashed line corresponding to the same situation and obtained in [6]. However, 
the relations used in the present study are inadequate for determining the extent to which 
the lower branch of the hysteresis loop descends below the dashed line. It is necessary 
to have relations for separated flow about a plate in the presence of a source modeling 
the wake and the delay in its disappearance with movement along the lower branch of the 
hysteresis loop (i.e., with a reduction in the angle of attack). Nevertheless, it is clear 
that the data presented in Fig. 3 is sufficient to demonstrate the quantitative reliability 
of the model for describing hysteresis associated with deep dyanamic stall when there is a 
periodic change in the angle of attack within the range of moderate values of this angle 
(the deviations from the experimental data do not exceed the deviations of the numerical 
solution of the Navier-Stokes equations from [5]). 

In conclusion, we note that at ~ ~ 1 and & = const (i.e., under conditions character- 
istic of the problem of "ultra-maneuverability") the main physical reason for the increase 
in aerodynamic loads is a transition from separated flow with a fully formed wake to wake- 
less separated flow (to the cases first reported in [6]); all of the other transient effects 
described here can be ignored due to their small magnitude. 
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FIELD OF HORIZONTAL VELOCITIES CREATED BY A MOVING SOURCE 

OF PERTURBATIONS IN A STRATIFIED FLUID 

V. F. Sannikov UI)C 551.466.81 

A linear formulation is used in the present study to examine a three-dimensional prob- 
lem concerning determination of the field of horizontal velocities u(x, y, z) created by 
a point source moving uniformly and rectilinearly in an inviscid, incompressible, vertical- 
ly stratified fluid. Formulas representing the exact solution of the problem are obtained 
in the form of single integrals. In contrast to the solution obtained in [i] for the verti- 
cal component of velocity, the expressions obtained here for u contain nonwave terms which 
ensure that the series converge. Complete asymptotic expansions of u are constructed for 
x 2 + y2 + ~ and it is shown that they converge when the contributions of the individual 
modes are summed. An example of calculation of the components of u in the nearby region 
is presented for a homogeneous fluid and a uniformly stratified fluid. It is shown that 
the singularity normally present in the calculation of wave characteristics in the nearby 
region is eliminated if the term corresponding to the case of a homogeneous fluid is removed 

from the solution. 

i. Let an inviscid incompressible fluid occupy the region -~ < x I, y < +~, -h < z < 
0. The density of the undisturbed fluid p0(z) depends only on the vertical coordinate z 
and does not decrease with depth. A source of intensity q, located at the depth h 0 reckoned 
from the position of the undisturbed free surface z = 0, moves at a constant velocity c 
in the negative direction of x i axis. The stationary wave field created by the source is 
described by the following equations in the coordinate system connected with the source 

x = x I - ct 

Po D v  : - - V P  J r  gP,  D p  : pog'lN2w, VV = q6(x, y, z + ho) ( 1 . 1 )  
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